STORMWATER WETLAND SIZING WORKSHEET

2005 Surface Water Design Manual Sizing Method

Project na	me:					
METHOD	S OF ANA	ALYSIS (see p. 6-86)				
Step 1) De	termine v	olume factor f.				
Use basic		f = 3	Consult W	O require	ements(Section1.2.8)	
		ainfall R for mean annual sto	-		(0.000	
Rainfall (R)			_(feet)	t) Required from Figure 6.4.1.A		
-		<u>noff from mean annual storm</u>				
$V_{r} = (0.9A_{i})$	$+ 0.25A_{tg} + 0$	0.10A _{tf +} 0.01 A _{og}) X R				
	$A_i =$	tributary area of impervious surface	c <u>e</u>	(sf)	Determine now	
	$A_{tg} =$	tributary area of till grass		(sf)	Determine now	
	Atf =	tributary area of till forest		(sf)	Determine now	
	$A_{og} =$	tributary area of outwash grass		(sf)	Determine now	
	R =	rainfall from mean annual storm		(ft)	From Step 2	
	$V_r =$	volume of runoff from		•		
		mean annual storm		(cf)		
				•		
Step 4) Ca	Iculate vo	lume of "template" wetpool				
$V_b = f V_r$						
	f =	Volume factor	3	(unitless	From Step 1	
	$V_r =$	volume runoff, mean annual storn	n	(cf)	From Step 3	
	$V_b =$	Volume of the "template" wetpool		(cf)		
Step 5) Ca	Iculate red	quired wetland surface area				
$A_{top} = V_{b/3}$	3			$(A_{top} = s$	surface area of both cells)	
	template V	/ _b =		(cf)	From step 4	
	Atop =			(sf)	"Sizing" depth is 3 ft	
				•	(see step 7, p. 6-87)	
Step 6) De	etland cell dimensions	same as st	eps 7 &	8, stormwater wetland)		
a) Determine geometry of first cell						
	V _r from ste	ep 3 = volume 1st cell		(cf)		
	Depth h 1	st cell (minus sed. stor.)		(ft)	Note actual cell depth	
					may be from 4 to 8 ft	

Determine horizontal xs area at mid-depth	using Amid = V1st/h					
A_{mid}	(sf)					
Mid-width	(ft)					
Mid-length	(ft)					
Determine horizontal xs area at surface						
Z = Side slope length:(H):	1(V)(ft)	3:1 recommended				
$2(h/2 \times Z)=$	(ft)					
Find top dimensions by adjusting for shape geometrics						
Top width	(ft)					
Top length	(ft)					
$A_{T1} =$	(sf)					
b) Determine geometry of second cell						
Wetland surface area A _{top}	(sf)	From step 5				
Surface area of cell 2		A_{top} - A_{T1}				
Depth h of 2nd cell	varies, 1.5' avg	See Table 6.4.3.A and				
·		Criteria #8 p. 6-88				
See recommendations in Table 6.4.1.A, p. 6-75 Step 8) Design rest of pond (See p. 6-87 for Cri Internal berm Inlet & Outlet Primary overflow Access Other Design Details (Sections 6.2.2, p. 6-18, 6.		n 6.22)				
Sequence of Facilities Setbacks Sideslopes, fencing, embankment Liners	2.5, p. 20 and 6.2.4,	ρ. υ- <i>ΖΖ)</i>				
Total pond surface area estimate Surface area 1st cell + 2nd cell + area for = = = = sf	internal berm + area fo	r access ramp				
Plus setbacks, access roads, 100-yr conveyance						